matplotlib统计图
seaborn的tips数据集包含消费账单的大小,人数,星期几,时间等。
- 加载tips数据集
 
tips = sns.load_dataset("tips")print(tips.head())   total_bill   tip     sex smoker  day    time  size0       16.99  1.01  Female     No  Sun  Dinner     21       10.34  1.66    Male     No  Sun  Dinner     32       21.01  3.50    Male     No  Sun  Dinner     33       23.68  3.31    Male     No  Sun  Dinner     24       24.59  3.61  Female     No  Sun  Dinner     4- 直方图(单变量)
 
fig = plt.figure()axes1 = fig.add_subplot(1, 1, 1)axes1.hist(tips['total_bill'], bins=10)axes1.set_title('Histogram of Total Bill')axes1.set_xlabel('Frequency' )axes1.set_ylabel('Total Bill')fig.show ()
图片.png
- 散点图(双变量)
 
scatter_plot = plt.figure()axesl = scatter_plot.add_subplot(1, 1, 1)axesl.scatter(tips['total_bill'], tips['tip'])axesl.set_title('Scatterplot of Total Bill vs Tip')axesl.set_xlabel('Total Bill')axesl.set_ylabel('Tip') scatter_plot.show()
图片.png
- 箱形图
 
boxplot = plt.figure()axesl = boxplot.add_subplot(1, 1, 1)axesl.boxplot([tips[tips['sex'] == 'Female']['tip'], tips[tips ['sex'] == 'Male']['tip']])axesl.set_xlabel('Sex')axesl.set_ylabel('Tip')axesl.set_title('Boxplot of Tips by Sex')
图片.png
- 多变量绘图
 
# create a color variable based on the sexdef recode_sex(sex):    if sex == 'Female':        return 0    else:        return 1    tips['sex_color'] = tips['sex'].apply(recode_sex)scatter_plot = plt.figure()axesl = scatter_plot.add_subplot(1, 1, 1)axesl.scatter(x=tips['total_bill'], y=tips['tip'], s=tips['size'] * 10,c=tips['sex_color'], alpha=0.5)axesl.set_title('Total Bill vs Tip colored by Sex and sized by Size')axesl.set_xlabel('Total Bill')axesl.set_ylabel('Tip')scatter_plot.show()
图片.png
参考资料
- 讨论qq群144081101 591302926 567351477 钉钉免费群21745728
 


